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bstract

Polymorphs of AlH3 were prepared by organometallic synthesis. We demonstrate that freshly synthesized, nonsolvated AlH3 releases approxi-
ately 10 wt% H2 at desorption temperatures less than 100 ◦C. The decomposition kinetics, measured by isothermal hydrogen desorption between

0 and 140 ◦C, suggest that the rate of H2 evolution is limited by nucleation and growth of the aluminum phase. The H2 evolution rates for small
rystallites of � and �-AlH3 (undoped) meet the DOE full flow target for a 50 kW fuel cell (1 gH2/s) above 114 ◦C (based on 100 kg AlH3). The

ecomposition thermodynamics were measured using differential scanning calorimetry and ex situ X-ray diffraction. The decomposition of the
ess stable polymorph, �-AlH3, occurs by an exothermic transformation to the � phase (∼100 ◦C) followed by the decomposition of �-AlH3. A
ormation enthalpy of approximately −10 kJ/mol AlH3 was measured for �-AlH3, which is in good agreement with previous experimental and
alculated results.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Aluminum hydride, or alane (AlH3), is potentially an attrac-
ive storage material due to the large amount of hydrogen that
an be contained in a relatively small, lightweight package.
lH3 contains 10% H by weight and has a theoretical H den-

ity of 148 g/L, which is more than double the density of liquid
2. AlH3 exhibits seven different known polymorphs [1]. Each
hase has a unique structure and atomic arrangement and there-
ore exhibits different thermodynamic and kinetic properties.
hermodynamic studies of the � phase suggest equilibrium
2 pressure of around 105 bar at 298 K [2,3]. Therefore, �-
lH3, and the other less stable polymorphs, can spontaneously
ecompose at room temperature. However, due apparently to
he presence of a stabilizing surface layer, early experiments on
lH3 synthesized by the DOW Chemical Company exhibited

low H2 evolution rates below 150 ◦ C. Sandrock et al. have
emonstrated that the addition of a dopant, LiH, introduced by

all milling, alters this surface barrier and lowers the decom-
osition temperature by 25–50 ◦C [4,5]. More recently, freshly
ynthesized nanoscale AlH3 has been shown to decompose at
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Calorimetry

ess than 100 ◦C without the need of a dopant or ball milling [6].
n addition, the total H2 yield with the fresh material approaches
he theoretical value of 10 wt%.

. Methods

Calorimetric measurements were performed using a Mettler Toledo
SC822e differential scanning calorimeter (DSC) using a dynamic temperature

amp between 35 and 300 ◦C at a rate of 10 ◦C/min. X-ray powder diffraction
XRPD) experiments were performed using Cu K� radiation. XRPD samples
ere coated with silicon-based vacuum grease and sealed under a Kapton film to
revent air exposure. Crystallite sizes were estimated from surface area measure-
ents based on spherical particle geometry. Surface area measurements were

erformed with a Quanta Chrome NOVA 1000 surface area analyzer on the
ecomposed material (Al powder) after a 10 h degassing procedure at 200 ◦C.
sothermal desorption measurements were performed by heating approximately
.33 g of AlH3 in an evacuated volume (V ≈ 1.2 L). The sample temperature was
easured with internal and external thermocouples. Sample handling, transfer,

nd storage were performed under an inert atmosphere in a purified Ar glovebox.

. Materials

The alane samples used in this study were prepared by an ethereal reaction
f AlCl3 with LiAlH4 originally developed by Brower et al. [1]:
LiAlH4 + AlCl3
Et2O−→3LiCl + 4AlH3 · Et2O (1)

The LiCl precipitate is removed by filtration to yield a solution of ether-
ted aluminum hydride, AlH3·[C2H52O]. Stabilized �-AlH3, consisting of large

mailto:graetz@bnl.gov
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uboid crystallites (∼50 �m), was prepared by the Dow Chemical Company
sing a continuous crystallization method. In this process, the aluminum hydride
therate, formed in Eq. (1), is used as a feed solution and added to a crystal-
ization medium of benzene, ether, and a selection of complex metal hydrides at

77 ◦C [1]. This material is completely inert in air, which is likely attributed to
small amount of organic material incorporated into the surface as a protective
oating [7,8]. A scanning electron microscopy (SEM) micrograph of a single
rystallite is shown in Fig. 1(a) and the XRPD pattern from the large crystallite
atch is shown in Fig. 1(b).

Small crystallites of �-AlH3 were freshly prepared by heating AlH3 ether-
te (formed by reaction (1)) in the presence of a complex metal hydride
LiAlH4 and LiBH4) under a reduced atmosphere for up to four hours. A sur-

ace area of 11 m2/g was measured by BET, suggesting a particle diameter of
200 nm (based on a spherical geometry). The SEM micrograph and asso-

iated XRPD pattern are shown in Figs. 1(c) and (d). The XRPD pattern is
early identical to that of Fig. 1(b) with the exception of a much smaller (0 1 2)
ragg peak (2θ = 28◦) relative to the other Bragg reflections. This is due to

r

�

ig. 1. SEM micrographs and X-ray diffraction patterns from (a, b) �-AlH3 prepared
y BNL.
mpounds 446–447 (2007) 271–275

he smaller particle size, which allows for better averaging over all crystallite
rientations.

A similar procedure was used to form small crystallites of �-AlH3. The
lH3 etherate (formed by reaction (1)) was heated at 65 ◦C in the presence of
iAlH4. A surface area of 16 m2/g was measured by BET, suggesting a particle
iameter of ∼140 nm (based on a spherical geometry). The SEM micrograph
nd associated XRPD pattern from �-AlH3 are shown in Figs. 1(c) and (d). It is
nteresting to note that at this scale the particle morphology appears similar to
hat of the small crystallites of �-AlH3 (Fig. 1(c)).

. Decomposition pathway and thermodynamics
The decomposition of �-AlH3 occurs in a single endothermic
eaction:

-AlH3 → Al + 3/2H2 (2)

by Dow Chem. Co. (c, d) �-AlH3 prepared by BNL, and (e, f) �-AlH3 prepared
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The decomposition of the stabilized (50 �m) and freshly
ynthesized (200 nm) �-AlH3 are shown in the DSC traces in
ig. 2(I) and (III), respectively. The stabilized material exhibits
n endotherm at ∼210 ◦C due to decomposition (reaction (2))
nd a small exothermic peak at ∼230 ◦C possibly due to a
eaction with surface impurities. The freshly prepared, small
rystallites of �-AlH3 exhibit a decomposition endotherm at
170 ◦C (reaction (2)). The reduced decomposition temper-

ture is attributed to a clean surface and smaller crystallite
ize. Based on calorimetric data from the freshly prepared
aterial, the enthalpy (�Hf) and Gibbs free energy (�Gf)

or the formation of �-AlH3 are �H = −9.9 kJ/mol AlH3 and
Gf298 K = 46.4 kJ/mol AlH3, respectively [3]. These values are

onsistent with those of Sinke et al.: �Hf = −11.4 ± 8 kJ/mol
lH3 and �Gf298 K = 46.4 ± 11 kJ/mol AlH3 [9]. The insets of
ig. 2 show the atomic structure before (�-AlH3 : R3̄c) and after
ecomposition (Al : Fm3̄m). Although the unit cell contracts by
pproximately 50% (AlH3: 20 cm3/mol; Al: 10 cm3/mol), the
eometry of the Al atoms does not change during decomposition
10].

The DSC trace from �-AlH3 is shown in Fig. 2(II). The
xothermic peak at ∼110 ◦C is attributed to a phase tran-
ition to the α polymorph. The � → � transition enthalpy
s �H�−� = −2.8 ± 0.4 kJ/mol AlH3 [3]. The endotherm at

◦
170 C is due to the decomposition of the � phase (reaction
2)) and the enthalpy is similar to that measured for the pure �
hase (−9.9(6) kJ/mol AlH3). The transition exotherm does not
verlap the decomposition endotherm, suggesting that for high

ig. 2. Differential scanning calorimetry of (I) large crystallites of �-AlH3

Dow), (II) small crystallites of �-AlH3, and (III) small crystallites of �-AlH3.
he insets show the atomic structure of �-AlH3 before (α-AlH3 : R3̄c) and after
ecomposition (Al : Fm3̄m).
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ig. 3. Ex situ X-ray powder diffraction patterns from �-AlH3 at 60 ◦C showing
n increase in �-AlH3 and Al metal. The dashed markers (|) indicate the peak
ositions for �-AlH3.

emperatures (≥100 ◦C) and rapid heating rates (≥10 ◦C/min)
he decomposition of �-AlH3 occurs in two steps:

-AlH3 → �-AlH3 → Al + 3/2H2 (T ≥ 100 ◦C) (3)

At temperatures below 100 ◦C the reaction is more compli-
ated. Ex situ XRPD from �-AlH3 (Fig. 3) reveal an increase
n the concentration of both Al metal and �-AlH3 over a
0 h period at 65 ◦C. Recent kinetic and thermodynamic stud-
es [6,11] suggest that at low temperature (≤100 ◦C) two
ecomposition pathways are present for �-AlH3: (1) direct
ecomposition to the elements (�-AlH3 → Al + 3/2H2) and (2)
phase transformation to the � polymorph followed by decom-
osition of the � phase (�-ALH3 → �-ALH3 → Al + 3/2H2).
he existence of two decomposition pathways at low temper-
ture is also supported by recent 27Al and proton NMR results
12].

. Hydrogen evolution rates

AlH3 samples were decomposed isothermally into an evacu-
ted volume (V ≈ 1.2 L) at temperatures between 30 and 140 ◦C.
xperiments performed with a slight H2 back pressure (∼2 bar)
howed similar results. In the temperature range 60–140 ◦C the
ractional decomposition curves exhibit a clear sigmoidal shape
ith distinct induction, acceleratory and decay periods as shown

n Fig. 4. This shape is indicative of an autocatalytic reaction,
ypical of solid-state decomposition. An analysis of the frac-
ional decomposition curves using the second and third order

vrami–Erofeyev equations [13,14] (60–140 ◦C) suggests that

he rate of H2 evolution is limited by nucleation and growth of the
luminum phase [6]. The activation energies and rate constants
or the AlH3 polymorphs are listed elsewhere [6,15]. At lower
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Fig. 6. Decomposition of �-AlH3 by intermittent heating (90 ◦C) and cooling
(23 ◦C) showing the total amount of H2 evolved and the rate. The H2 rate was
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ig. 4. High temperature isothermal decomposition curves from � and �-AlH3

tarting materials at 138 ◦C showing (I) induction period (II) acceleratory period,
nd (III) decay period.

emperatures (∼30 ◦C) the decomposition curves appear to loose
heir sigmoidal shape and develop a more linear character as
hown in Fig. 5. This could be indicative of a different, low tem-
erature rate-limiting step, such as the formation of molecular
ydrogen (H2) at the surface.

Decomposition of �-AlH3 was also investigated by intermit-
ent heating and cooling at 90 and 23 ◦C, respectively. The plot

n Fig. 6 shows the total H2 evolved (upper trace) and the first
erivative of the total H2 evolved (lower trace), which corre-
ponds to the H2 evolution rate for 100 kg of material. The
ate measured in the second decomposition step (50 × 103 s)

ig. 5. Low temperature isothermal decomposition curves from � and �-AlH3.
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etermined from the first derivative of the evolved H2 using 100 kg AlH3. The
arkers at 270 × 103 s indicate a two-day break in the data set where the sample

at idle at 23 ◦C.

s slightly larger than in the subsequent step due to a small
vershoot in temperature (∼10 ◦C). However, the general trend
hown in Fig. 6 is an increasing H2 evolution rate up to ∼5 wt%
volved H2 followed by a slow decline. This behavior is similar
o that observed for the continuous decomposition of �-AlH3
Fig. 4). The reaction rate can be slowed and even stopped by
ecreasing the sample temperature. Therefore, the full spectrum
f H2 evolution rates (e.g. 0.0–1.0 gH2/s) can likely be obtained
ith a 100 kg �-AlH3 variable temperature hydride bed where
3 ≤ T ≤ 115 ◦C.

Fig. 7 shows a plot of H2 evolution rates for 100 kg of freshly
repared � and �-AlH3 and stabilized �-AlH3 [15] determined
rom the “acceleratory” region of the fractional decomposition
urves (90% of total). At temperatures greater than ∼100 ◦C,
he H2 evolution rates are similar for the small crystallites of

and �-AlH3. At high temperature, �-AlH3 undergoes a rapid
ransformation to the � phase and therefore, the H2 evolution
ate is governed by the decomposition of the � phase. At 115 ◦C
he small crystallites of undoped � and �-AlH3 release H2 at a
ate of 1 gH2/s (DOE full flow target for a 50 kW fuel cell).

At temperatures less than 100 ◦C, the H2 evolution rates for
-AlH3 are much more rapid than the � phase, as shown in
ig. 7. This could be partially attributed to microstructural dif-
erences between the two phases. The � phase material exhibited
larger surface area, which could explain the greater H2 rates

specially if the low temperature kinetics were limited by the for-
ation of molecular H2 at the surface. The rate differences could

lso be attributed to the low temperature decomposition pathway
f the � phase, which tends to go directly to the elements (�-

lH3 → Al + 3/2H2) without the intermediate � transition. The

otal formation enthalpy of �-AlH3 is approximately 30% less
xothermic than that of the � phase [3] and therefore, �-AlH3 is
ess stable and has a greater driving force for decomposition.
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Fig. 7. Decomposition rates for freshly prepared � and �-AlH3 and stabilized
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-AlH3 [15] based on 100 kg of material. The dashed line represents the extrap-
lated rates for the stabilized �-AlH3. The power was determined from the lower
eat of combustion for H2 (120 kJ/g).

. Conclusion

The kinetics and thermodynamics of small crystallites of
-AlH3 and �-AlH3 and a stabilized form of �-AlH3 were

nvestigated. We demonstrate that alane decomposition is con-
rolled by nucleation and growth of the Al phase at temperatures
0–140 ◦C. Thermal decomposition of the � polymorph typi-
ally occurs via an exothermic transition to the � phase above
00 ◦C with partial direct decomposition occurring at lower tem-
eratures (<100 ◦C). Freshly prepared � and �-AlH3 exhibit
imilar H2 evolution rates (0.1–0.3 gH2/s) in the temperature
ange of interest (85–100 ◦C) for PEM fuel cell applications.

uch slower rates were observed with the stabilized Dow �

aterial (10−4 gH2/s at 100 ◦C based on extrapolated data).
Despite similar decomposition rates above 100 ◦C, the � poly-

orph is much less stable at low temperature (≤60 ◦C) and
herefore, will not likely meet the durability requirements for

[

[
[
[
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utomotive applications. Although �-AlH3 may be useful in low
emperature, low power fuel cell applications, the � polymorph
xhibits the preferred combination of low temperature stabil-
ty (40 ◦C) with rapid H2 evolution at moderate temperatures
100 ◦C). The greater durability and longer shelf life of �-AlH3
ill likely make it the preferred polymorph for automotive fuel

ell applications.
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