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Abstract

Polymorphs of AlHj; were prepared by organometallic synthesis. We demonstrate that freshly synthesized, nonsolvated AlH; releases approxi-
mately 10 wt% H, at desorption temperatures less than 100 °C. The decomposition kinetics, measured by isothermal hydrogen desorption between
30 and 140 °C, suggest that the rate of H, evolution is limited by nucleation and growth of the aluminum phase. The H, evolution rates for small
crystallites of o and y-AlH; (undoped) meet the DOE full flow target for a SOkW fuel cell (1 gH,/s) above 114 °C (based on 100 kg AlH3). The
decomposition thermodynamics were measured using differential scanning calorimetry and ex situ X-ray diffraction. The decomposition of the
less stable polymorph, y-AlHj3, occurs by an exothermic transformation to the o phase (~100°C) followed by the decomposition of a-AlH;3. A
formation enthalpy of approximately —10kJ/mol AlH; was measured for a-AlHj3, which is in good agreement with previous experimental and

calculated results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Aluminum hydride, or alane (AlH3), is potentially an attrac-
tive storage material due to the large amount of hydrogen that
can be contained in a relatively small, lightweight package.
AlH3 contains 10% H by weight and has a theoretical H den-
sity of 148 g/L, which is more than double the density of liquid
H,. AlH3 exhibits seven different known polymorphs [1]. Each
phase has a unique structure and atomic arrangement and there-
fore exhibits different thermodynamic and kinetic properties.
Thermodynamic studies of the o phase suggest equilibrium
Hj pressure of around 10° bar at 298 K [2,3]. Therefore, a-
AlHj3, and the other less stable polymorphs, can spontaneously
decompose at room temperature. However, due apparently to
the presence of a stabilizing surface layer, early experiments on
AlHj3 synthesized by the DOW Chemical Company exhibited
slow H, evolution rates below 150° C. Sandrock et al. have
demonstrated that the addition of a dopant, LiH, introduced by
ball milling, alters this surface barrier and lowers the decom-
position temperature by 25-50 °C [4,5]. More recently, freshly
synthesized nanoscale AlH3 has been shown to decompose at
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less than 100 °C without the need of a dopant or ball milling [6].
In addition, the total Hj yield with the fresh material approaches
the theoretical value of 10 wt%.

2. Methods

Calorimetric measurements were performed using a Mettler Toledo
DSC822¢ differential scanning calorimeter (DSC) using a dynamic temperature
ramp between 35 and 300 °C at a rate of 10 °C/min. X-ray powder diffraction
(XRPD) experiments were performed using Cu Ka radiation. XRPD samples
were coated with silicon-based vacuum grease and sealed under a Kapton film to
prevent air exposure. Crystallite sizes were estimated from surface area measure-
ments based on spherical particle geometry. Surface area measurements were
performed with a Quanta Chrome NOVA 1000 surface area analyzer on the
decomposed material (Al powder) after a 10h degassing procedure at 200 °C.
Isothermal desorption measurements were performed by heating approximately
0.33 g of AlHj3 in an evacuated volume (V= 1.2 L). The sample temperature was
measured with internal and external thermocouples. Sample handling, transfer,
and storage were performed under an inert atmosphere in a purified Ar glovebox.

3. Materials

The alane samples used in this study were prepared by an ethereal reaction
of AICI3 with LiAlH4 originally developed by Brower et al. [1]:

3LiAIH, + AICL2293LiCl + 4AIH; - E,O )

The LiCl precipitate is removed by filtration to yield a solution of ether-
ated aluminum hydride, AlH3-[C,Hs,O]. Stabilized a-AlH3, consisting of large
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cuboid crystallites (~50 wm), was prepared by the Dow Chemical Company
using a continuous crystallization method. In this process, the aluminum hydride
etherate, formed in Eq. (1), is used as a feed solution and added to a crystal-
lization medium of benzene, ether, and a selection of complex metal hydrides at
~77°C [1]. This material is completely inert in air, which is likely attributed to
a small amount of organic material incorporated into the surface as a protective
coating [7,8]. A scanning electron microscopy (SEM) micrograph of a single
crystallite is shown in Fig. 1(a) and the XRPD pattern from the large crystallite
batch is shown in Fig. 1(b).

Small crystallites of a-AlH3 were freshly prepared by heating AlH3 ether-
ate (formed by reaction (1)) in the presence of a complex metal hydride
(LiAlH4 and LiBH4) under a reduced atmosphere for up to four hours. A sur-
face area of 11 m?/g was measured by BET, suggesting a particle diameter of
~200nm (based on a spherical geometry). The SEM micrograph and asso-
ciated XRPD pattern are shown in Figs. 1(c) and (d). The XRPD pattern is
nearly identical to that of Fig. 1(b) with the exception of a much smaller (0 1 2)
Bragg peak (26 =28°) relative to the other Bragg reflections. This is due to
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the smaller particle size, which allows for better averaging over all crystallite
orientations.

A similar procedure was used to form small crystallites of y-AlH3. The
AlHj3 etherate (formed by reaction (1)) was heated at 65 °C in the presence of
LiAIH4. A surface area of 16 m?/g was measured by BET, suggesting a particle
diameter of ~140nm (based on a spherical geometry). The SEM micrograph
and associated XRPD pattern from y-AlH3 are shown in Figs. 1(c) and (d). It is
interesting to note that at this scale the particle morphology appears similar to
that of the small crystallites of a-AlH3 (Fig. 1(c)).

4. Decomposition pathway and thermodynamics

The decomposition of a-AlH3 occurs in a single endothermic
reaction:

a-AlH; — Al + 3/2H, )
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Fig. 1. SEM micrographs and X-ray diffraction patterns from (a, b) a-AlH3 prepared by Dow Chem. Co. (c, d) a-AlH3 prepared by BNL, and (e, f) y-AlH3 prepared

by BNL.



J. Graetz et al. / Journal of Alloys and Compounds 446—447 (2007) 271-275 273

The decomposition of the stabilized (50 wm) and freshly
synthesized (200 nm) a-AlH3 are shown in the DSC traces in
Fig. 2(I) and (III), respectively. The stabilized material exhibits
an endotherm at ~210 °C due to decomposition (reaction (2))
and a small exothermic peak at ~230°C possibly due to a
reaction with surface impurities. The freshly prepared, small
crystallites of a-AlH3 exhibit a decomposition endotherm at
~170°C (reaction (2)). The reduced decomposition temper-
ature is attributed to a clean surface and smaller crystallite
size. Based on calorimetric data from the freshly prepared
material, the enthalpy (AHf) and Gibbs free energy (AGy)
for the formation of a-AlH3 are AH=—9.9kJ/mol AlH3 and
AGpogk =46.4kJ/mol AlH3, respectively [3]. These values are
consistent with those of Sinke et al.: AHf=—11.4 4 8kJ/mol
AlH3 and AGpogg =46.4 & 11kJ/mol AlH3 [9]. The insets of
Fig. 2 show the atomic structure before (a-AlH3 : R3c) and after
decomposition (Al : Fm3m). Although the unit cell contracts by
approximately 50% (AlHz: 20 cm?/mol; Al: 10 cm3/mol), the
geometry of the Al atoms does not change during decomposition
[10].

The DSC trace from y-AlH3 is shown in Fig. 2(II). The
exothermic peak at ~110°C is attributed to a phase tran-
sition to the o polymorph. The y— o transition enthalpy
is AHy =-2.8+0.4kJ/mol AlH3 [3]. The endotherm at
~170°C is due to the decomposition of the o phase (reaction
(2)) and the enthalpy is similar to that measured for the pure o
phase (—9.9(6) kJ/mol AlH3). The transition exotherm does not
overlap the decomposition endotherm, suggesting that for high
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Fig. 2. Differential scanning calorimetry of (I) large crystallites of o-AlH3
(Dow), (II) small crystallites of y-AlH3, and (IIT) small crystallites of a-AlH3.
The insets show the atomic structure of a-AlH3 before (a-AlH3 : R3c¢) and after
decomposition (Al : Fm3m).
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Fig. 3. Ex situ X-ray powder diffraction patterns from y-AlH3 at 60 °C showing
an increase in a-AlH3 and Al metal. The dashed markers (|) indicate the peak
positions for y-AlH3.

temperatures (>100°C) and rapid heating rates (>10 °C/min)
the decomposition of y-AlH3 occurs in two steps:

v-AlH3z — «a-AlHz — Al + 3/2H, (T > 100°C) 3)

At temperatures below 100 °C the reaction is more compli-
cated. Ex situ XRPD from y-AlH3 (Fig. 3) reveal an increase
in the concentration of both Al metal and «a-AlH3 over a
10h period at 65 °C. Recent kinetic and thermodynamic stud-
ies [6,11] suggest that at low temperature (<100°C) two
decomposition pathways are present for y-AlHsz: (1) direct
decomposition to the elements (y-AlH3 — Al+3/2H5) and (2)
a phase transformation to the a polymorph followed by decom-
position of the o phase (y-ALH3 — a-ALH3 — Al+3/2H)).
The existence of two decomposition pathways at low temper-
ature is also supported by recent 2” Al and proton NMR results
[12].

5. Hydrogen evolution rates

AlH3 samples were decomposed isothermally into an evacu-
ated volume (V~ 1.2 L) at temperatures between 30 and 140 °C.
Experiments performed with a slight Hy back pressure (~2 bar)
showed similar results. In the temperature range 60-140 °C the
fractional decomposition curves exhibit a clear sigmoidal shape
with distinct induction, acceleratory and decay periods as shown
in Fig. 4. This shape is indicative of an autocatalytic reaction,
typical of solid-state decomposition. An analysis of the frac-
tional decomposition curves using the second and third order
Avrami—Erofeyev equations [13,14] (60-140 °C) suggests that
the rate of H, evolution is limited by nucleation and growth of the
aluminum phase [6]. The activation energies and rate constants
for the AIH3 polymorphs are listed elsewhere [6,15]. At lower
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Fig. 4. High temperature isothermal decomposition curves from o and y-AlH3
starting materials at 138 °C showing (I) induction period (II) acceleratory period,
and (IIT) decay period.

temperatures (~30 °C) the decomposition curves appear to loose
their sigmoidal shape and develop a more linear character as
shown in Fig. 5. This could be indicative of a different, low tem-
perature rate-limiting step, such as the formation of molecular
hydrogen (H») at the surface.

Decomposition of a-AlH3 was also investigated by intermit-
tent heating and cooling at 90 and 23 °C, respectively. The plot
in Fig. 6 shows the total Hy evolved (upper trace) and the first
derivative of the total Hy evolved (lower trace), which corre-
sponds to the Hy evolution rate for 100kg of material. The
rate measured in the second decomposition step (50 x 103 s)
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Fig. 5. Low temperature isothermal decomposition curves from « and y-AlH3.
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Fig. 6. Decomposition of a-AlH3 by intermittent heating (90 °C) and cooling
(23 °C) showing the total amount of H, evolved and the rate. The Hj rate was
determined from the first derivative of the evolved H; using 100 kg AlIH3. The
markers at 270 x 103 s indicate a two-day break in the data set where the sample
sat idle at 23 °C.

is slightly larger than in the subsequent step due to a small
overshoot in temperature (~10 °C). However, the general trend
shown in Fig. 6 is an increasing H; evolution rate up to ~5 wt%
evolved Hj followed by a slow decline. This behavior is similar
to that observed for the continuous decomposition of a-AlHj3
(Fig. 4). The reaction rate can be slowed and even stopped by
decreasing the sample temperature. Therefore, the full spectrum
of Hj evolution rates (e.g. 0.0-1.0 gH,/s) can likely be obtained
with a 100 kg a-AlH3 variable temperature hydride bed where
23<T<115°C.

Fig. 7 shows a plot of Hj evolution rates for 100 kg of freshly
prepared o and y-AlH3 and stabilized a-AlH3 [15] determined
from the “acceleratory” region of the fractional decomposition
curves (90% of total). At temperatures greater than ~100 °C,
the Hy evolution rates are similar for the small crystallites of
o and y-AlH3. At high temperature, y-AlH3 undergoes a rapid
transformation to the o phase and therefore, the Hy evolution
rate is governed by the decomposition of the a phase. At 115°C
the small crystallites of undoped o and y-AlHj3 release Hj at a
rate of 1 gH»/s (DOE full flow target for a 50 kW fuel cell).

At temperatures less than 100 °C, the Hj evolution rates for
v-AlH3 are much more rapid than the o phase, as shown in
Fig. 7. This could be partially attributed to microstructural dif-
ferences between the two phases. The y phase material exhibited
a larger surface area, which could explain the greater Hj rates
especially if the low temperature kinetics were limited by the for-
mation of molecular Hj at the surface. The rate differences could
also be attributed to the low temperature decomposition pathway
of the y phase, which tends to go directly to the elements (7y-
AlH3 — Al + 3/2H;) without the intermediate « transition. The
total formation enthalpy of y-AlHj3 is approximately 30% less
exothermic than that of the o phase [3] and therefore, y-AlH3 is
less stable and has a greater driving force for decomposition.



J. Graetz et al. / Journal of Alloys and Compounds 446—447 (2007) 271-275 275

g T T T T T T T T T T T I T T T T T
10 ¢ o a-AlH, 1200
: YA,
10° - {120
E DOE target for 50 kW FC
= I o
L 10 E 120 ¢
= E stabilized a-AlH, 3
== r Herley et al.) =
e F ( ' =
e 10%F N 120 3
F '
10° .’ 0.12
£ i
107 i 0012
SETERTETETENARRTN] RRTARRET] ENRRE ATAT ARRRNCRANE AARTU AT RRRRUATOTA|

40 60 80 100 120 140 160

Temperature (°C)

Fig. 7. Decomposition rates for freshly prepared o and y-AlH3 and stabilized
a-AlH3 [15] based on 100 kg of material. The dashed line represents the extrap-
olated rates for the stabilized a-AlH3. The power was determined from the lower
heat of combustion for Hp (120kJ/g).

6. Conclusion

The kinetics and thermodynamics of small crystallites of
a-AlH3 and y-AlH3 and a stabilized form of a-AlH3 were
investigated. We demonstrate that alane decomposition is con-
trolled by nucleation and growth of the Al phase at temperatures
60-140°C. Thermal decomposition of the y polymorph typi-
cally occurs via an exothermic transition to the a phase above
100 °C with partial direct decomposition occurring at lower tem-
peratures (<100 °C). Freshly prepared o and y-AlH3 exhibit
similar Hp evolution rates (0.1-0.3 gH»/s) in the temperature
range of interest (85-100°C) for PEM fuel cell applications.
Much slower rates were observed with the stabilized Dow o
material (10~# gHy/s at 100 °C based on extrapolated data).

Despite similar decomposition rates above 100 °C, the y poly-
morph is much less stable at low temperature (<60 °C) and
therefore, will not likely meet the durability requirements for

automotive applications. Although y-AlH3 may be useful in low
temperature, low power fuel cell applications, the o polymorph
exhibits the preferred combination of low temperature stabil-
ity (40 °C) with rapid Hy evolution at moderate temperatures
(100 °C). The greater durability and longer shelf life of a-AlH3
will likely make it the preferred polymorph for automotive fuel
cell applications.
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